Homework 4 Algebra

Joshua Ruiter

February 21, 2018

Chapter V

Proposition 0.1 (Exercise 20a). Let $F \subset L$ be a field extension and let $x \in L$ be transcendental over F. Let $K \neq F$ be an intermediate field satisfying

$$F \subset K \subset F(x)$$

Then x is algebraic over K.

Proof. Since $K \neq F$, there exists $\alpha \in K \setminus F$. We know that

$$F(x) = \left\{ \frac{f(x)}{g(x)} : f, g \in F[y], g(x) \neq 0 \right\}$$

The requirement g(x) = 0 can be dropped, since x is transcendental over F. Since $\alpha \in K \subset F(x)$, we can write α as

$$\alpha = \frac{f(x)}{g(x)} \implies \alpha g(x) - f(x) = 0$$

for some $f,g \in F[y]$. Then define $h(y) \in K[y]$ by $h(y) = \alpha g(y) - f(y)$. By the above, h has x as a root. Also note that h cannot be the zero polynomial, since if it were, then $\alpha g = f$, but f has coefficients in F and the coefficients of αg lie outside F, since $\alpha \notin F$. Thus x is a root of $h \in K[y]$, so x is algebraic over K.

Proposition 0.2 (Gauss's Lemma). Let R be a unique factorization domain with field of fractions F. A non-constant polynomial in R[x] is irreducible in R[x] if and only if it is both irreducible in F[x] and primitive (coefficients have gcd 1) in R[x].

Proposition 0.3 (Exercise 20b). Let F be a field and let x be transcendental over F. Let $y = \frac{f(x)}{g(x)}$ be a rational function with $f, g \in F[x]$. Let $n = \max(\deg f, \deg g)$ and assume $n \ge 1$. Then

$$[F(x):F(y)] = n$$

Proof. We think of f, g as polynomials in F[x]. Then we can define

$$h(t) = f(t) - yg(t) \in F[y, t]$$

Note that $F[y][t] = F[t][y] = F[y,t] \subset F(y)[t]$. We claim that h is not the zero polynomial. Since $n \geq 1$, y is not in F. If h were zero, then f(t) = yg(t) and the leading coefficient of f(t) is in F and the leading coefficient of yg(t) is not, which is a contradiction. Thus h is not the zero polynomial.

By construction, x is a root of h, so the irreducible polynomial of x over F(y) divides h. Note that F(y) is the quotient field of F[y]. As a polynomial in the variable y with coefficients in F[t], h is linear, so it is irreducible. That is, h is irreducible in (F[t])[y], so it is irreducible in F[y][t]. Then by Gauss's Lemma (see above for statement), h is irreducible in F(y)[t]. Thus h is the irreducible polynomial of x over F(y).

Finally, note that the degree of h as a polynomial in t with coefficients in F(y) is $\max(\deg f, \deg g) = n$. Then by Proposition 1.6 (Lang pg 227),

$$[F(y):F(x)] = \deg h = n$$

Proposition 0.4 (Exercise 24a). Let k be a field of characteristic p, and let t, u be algebraically independent over k. Then k(t,u) has degree p^2 over $k(t^p,u^p)$. Symbolically, $[k(t,u):k(t^p,u^p)]=p^2$.

Proof. We have the tower of fields

$$k(t^p, u^p) \subset k(t, u^p) \subset k(t, u)$$

Since t, u are algebraically independent over k, t^p does not have a pth root in $k(t^p, u^p)$, so the polynomial $f(x) = x^p - t^p \in k(t^p, u^p)[x]$ is irreducible by Exercise 15 from previous homework (Lang pg 254). Also, f splits linearly as

$$f(x) = x^p - t^p = (x - t)^p$$

so f is the irreducible polynomial of t over $k(t^p, u^p)$, and the splitting field of f is $k(t, u^p)$. Thus by Proposition 1.4 (Lang pg 225),

$$[k(t, u^p) : k(t^p, u^p)] = \deg f = p$$

Similarly, u^p does not have a pth root in $k(t, u^p)$, so the polynomial $g(x) = x^p - u^p \in k(t, u^p)[x]$ is irreducible by Exercise 15. It splits linearly as

$$g(x) = x^p - u^p = (x - u)^p$$

so g is the irreducible polynomial of u over $k(t, u^p)$, and the splitting field of g is k(t, u). Thus by Proposition 1.4,

$$[k(t,u):k(t,u^p)]=\deg g=p$$

Then by multiplicativity of degrees for towers,

$$[k(t, u) : k(t^p, u^p)] = [k(t, u) : k(t, u^p)][k(t, u^p) : k(t^p, u^p)] = p^2$$

Proposition 0.5 (Exercise 24b). Let k be a field of characteristic p, and let t, u be algebraically independent over k. Then there are infinitely many extensions E such that

$$k(t^p, u^p) \subset E \subset k(t, u)$$

Proof. By part (a), k(t, u) is a finite extension of $k(t^p, u^p)$, so we can apply the Primitive Element Theorem. By the PET, there exists an element $\alpha \in k(t, u)$ such that $k(t^p, u^p, \alpha) = k(t, u)$ if and only if there are only a finite number of intermediate extensions E satisfying

$$k(t^p, u^p) \subset E \subset k(t, u)$$

So in order to show that there are infinitely many extensions, we just need to show that such an α does not exist. Suppose such an α exists. Since $\alpha \in k(t, u)$, we can write α as

$$\alpha = \frac{f(t, u)}{g(t, u)}$$

where f, g are polynomials in t, u with coefficients in k. Then raising to the pth power, since char k = p,

$$\alpha^{p} = \left(\frac{f(t,u)}{g(t,u)}\right)^{p} = \frac{f^{p}(t^{p}, u^{p})}{g^{p}(t^{p}, u^{p})} \in k(t^{p}, u^{p})$$

where f^p, g^p indicate raising the coefficients from k to the pth power. Thus $\alpha^p \in k(t^p, u^p)$. Thus the polynomial

$$x^p - \alpha^p = (x - \alpha)^p$$

is in $k(t^p, u^p)[x]$, with α as a root, so $Irr(\alpha, k(t^p, u^p))$ divides $x^p - \alpha^p$. In particular, it has degree $\leq p$. The degree of $k(t^p, u^p)(\alpha)$ over $k(t^p, u^p)$ is bounded above by the degree of the irreducible polynomial of α , so

$$[k(t^p, u^p)(\alpha) : k(t^p, u^p)] \le p$$

By assumption, $k(t^p, u^p, \alpha) = k(t, u)$, so

$$[k(t,u):k(t^p,u^p)] \le p$$

But we showed in part (a) that the degree above is precisely p^2 , which is decidedly not less than p. Thus no such α exists, so by the reasoning at the beginning involving the PET, there are infinitely manyintermediate extensions $k(t^p, u^p) \subset E \subset k(t, u)$.

Lemma 0.6 (for Exercise 25). Any finite field extension of a finite field is generated by a single element.

Proof. Let k be finite and E/k a finite extension. Then E is finite, so $E^{\times} = E \setminus \{0\}$ is a cyclic multiplicative group. Let α be a generator. Then $E = k(\alpha)$.

The next lemma is the same claim as for Exercise 25, with the extra hypothesis that E/k is purely inseparable. This is used for the proof of the more general statement.

Lemma 0.7 (for Exercise 25). Let k be a field of characteristic p > 0, and let E be a finite, purely inseparable extension of k. Let $p^r = [E:k]_i$. Suppose that there is no s < r so that $E^{p^s}k$ is separable over k. (Equivalently, α^{p^s} is separable over k for each $\alpha \in E$.) Then E can be generated by one element over k.

Proof. By hypothesis, there is no s < r such that β^{p^r} is separable over k for every $\beta \in E$. Thus there exists $\alpha \in E$ such that $\alpha^{p^{r-1}}$ is not separable over k. Note that $[k(\alpha):k]_1 = 1$ since E/k is purely inseparable. By Proposition 6.1 (Lang pg 251),

$$[k(\alpha):k] = p^{\mu}[k(\alpha):k]_2 = p^{\mu}$$

for some $\mu \geq 0$, and $\alpha^{p^{\mu}}$ is separable over k. If $r < \mu$, then $\alpha^{p^{r-1}}$ is separable (using the hypotheses) but $\alpha^{p^{r-1}}$ is not separable, so $\mu \geq r$. On the other hand, $p^{\mu} = [k(\alpha) : k]$ must divide $[E : k] = [E : k]_i = p^r$, so $\mu \leq r$. Thus $\mu = r$. Thus

$$p^r = [E:k] = [E:k(\alpha)][k(\alpha):k] = [E:k(\alpha)]p^{\mu} = [E:k(\alpha)]p^r \implies [E:k(\alpha)] = 1$$

which implies $E = k(\alpha)$.

Proposition 0.8 (Exercise 25). Let k be a field of characteristic p > 0, and let E be a finite extension of k. Let $p^r = [E:k]_i$. Suppose that there is no s < r so that $E^{p^s}k$ is separable over k. (Equivalently, α^{p^s} is separable over k for each $\alpha \in E$.) Then E can be generated by one element over k.

Proof. We may assume that k is infinite, since if k is finite we apply Lemma 0.6.

By Proposition 6.6 (Lang pg 250), we can choose an intermediate field $k \subset E_0 \subset E$ so that E/E_0 is purely inseparable and E_0/k is separable. By the Primitive Element Theorem (Theorem 4.6 on pg 243 of Lang), $E_0 = k(\alpha)$ for some $\alpha \in E_0$. By Lemma 0.7 above, $E = E_0(\beta)$ for some $\beta \in E$. Thus $E = k(\alpha, \beta)$. We will use α, β to construct a primitive element.

$$E = E_0(\beta)$$

purely inseparable

 $E_0 = k(\alpha)$

separable

 k

By hypothesis, there exists $\mu \geq 0$ so that $\beta^{p^{\mu}}$ is separable over k. Thus $\beta^{p^{\mu}} \in E_0$, since E_0 is the maximal separable extension. Since $E_0 = k(\alpha)$, using the PET there are only finitely many subextensions $k \subset F \subset E_0$. For $\delta \in k^{\times}$, we have a subextension

$$k \subset k \left(\alpha^{p^{\mu}} + \delta^{p^{\mu}} \beta^{p^{\mu}}\right) \subset E_0$$

since $\alpha, \delta, \beta^{p^{\mu}} \in E_0$. By Exercise 15 of Chapter V (Lang pg 254) from previous homework,

$$E_0 = k(\alpha) = k(\alpha^{p^n}) \qquad \forall n \ge 0$$

Combining this with the fact that $\beta^{p^{\mu}} \in E_0$,

$$E_0 = k(\alpha) = k\left(\alpha^{p^{\mu}}\right) = k\left(\alpha^{p^{\mu}}, \beta^{p^{\mu}}\right)$$

Because k is infinite, k^{\times} is infinite, so there are infinitely many distinct $\alpha^{p^{\mu}} + \delta^{p^{\mu}}\beta^{p^{\mu}}$. Then by the pigeonhole principle, there exist δ_1, δ_2 with $\delta_1 \neq \delta_2$ so that

$$\widetilde{k} := k \left(\alpha^{p^{\mu}} + \delta_1^{p^{\mu}} \beta^{p^{\mu}} \right) = k \left(\alpha^{p^{\mu}} + \delta_2^{p^{\mu}} \beta^{p^{\mu}} \right)$$

(This defines \tilde{k} .) Then

$$\left(\alpha^{p^{\mu}} - \delta_1^{p^{\mu}}\beta^{p^{\mu}}\right) - \left(\alpha^{p^{\mu}} - \delta_2^{p^{\mu}}\beta^{p^{\mu}}\right) = \left(\delta_1^{p^{\mu}} - \delta_2^{p^{\mu}}\right)\beta^{p^{\mu}} = (\delta_1 - \delta_2)^{p^{\mu}}\beta^{p^{\mu}} \in \widetilde{k}$$

Since $\delta_1 \neq \delta_2$, we have $\delta_1 - \delta_2 \neq 0$, so $(\delta_1 - \delta_2)^{p^{\mu}} \in k^{\times}$, so $\beta^{p^{\mu}} \in \widetilde{k}$. This implies that $\alpha^{p^{\mu}} \in \widetilde{k}$ as well. Thus

$$E_0 = k\left(\alpha^{p^{\mu}}, \beta^{p^{\mu}}\right) \subset \widetilde{k}$$

Since $\widetilde{k} \subset E_0$, this implies that $E_0 = \widetilde{k}$. Finally, we claim that $E = k(\alpha + \delta\beta)$. For convenience, define $\delta = \delta_1$. We already know that $k(\alpha + \delta\beta) \subset E$. Recall that $E = k(\alpha, \beta)$, so to show the other inclusion we just need to show that $\alpha, \beta \in k(\alpha + \delta\beta)$. Note that

$$(\alpha + \delta\beta)^{p^{\mu}} = \alpha^{p^{\mu}} + \delta^{p^{\mu}}\beta^{p^{\mu}} \implies E_0 = k\left(\alpha^{p^{\mu}} + \delta^{p^{\mu}}\beta^{p^{\mu}}\right) \subset k(\alpha + \delta\beta)$$

Since $\alpha \in E_0$, this implies $\alpha \in k(\alpha + \delta\beta)$. Since $\alpha + \delta\beta$ is also in there, this gives us $\delta\beta \in k(\alpha + \delta\beta)$, and since $\delta \in k^{\times}$ we get $\beta \in k(\alpha + \delta\beta)$. Thus

$$E = k(\alpha, \beta) = k(\alpha + \delta\beta)$$

so E is generated by a single element over k.

Chapter VI

Note: We use the notation D_8 for the dihedral group with eight elements, which has the presentation

$$\langle \sigma, \tau \mid \tau^2 = 1, \tau \sigma \tau^{-1} = \sigma^3 \rangle$$

We often use the fact that any group with 8 elements satisfying the above relations is isomorphic to D_8 .

Lemma 0.9 (for Exercise 1). Let α be algebraic over \mathbb{Q} . Then the quotient field of $\mathbb{Z}[\alpha]$ is $\mathbb{Q}(\alpha)$.

Proof. By definition, $\mathbb{Q}(\alpha)$ is the smallest subfield of \mathbb{C} that contains \mathbb{Q} and α , so it is also the smallest subfield of \mathbb{C} that contains \mathbb{Z} and α , which is by definition the quotient field of $\mathbb{Z}[\alpha]$.

Lemma 0.10 (for Exercise 1). Let k be a field, and let $f(x) \in k[x]$ be irreducible and separable. Let K be the splitting field of f, and let G be the Galois group of K over k. Then G acts transitively on the roots of f.

Proof. From class. \Box

Lemma 0.11 (for Exercise 1). Let k be a field and let $f, g \in k[x]$ be irreducible. Let F, G be the splitting fields of f, g respectively. Then the compositum FG is the splitting field of fg.

Proof. From class. \Box

Proposition 0.12 (Exercise 1ab). .

- a) The Galois group of $x^3 x 1$ over \mathbb{Q} is S_3 .
- b) The Galois group of $x^3 10$ over \mathbb{Q} is S_3 .

Proof. As shown on page 270 of Lang, an irreducible cubic polynomial over a field with characteristic $\neq 2, 3$ is S_3 if and only if the discriminant is not a square in k. If it is, then the Galois group is A_3 .

- (a) By the integral root test, any root of $x^3 x 1$ in \mathbb{Q} must be ± 1 , but neither is a solution, so f is irreducible. The discriminant is $-4(-1)^3 27(-1)^2 = 4 27 = -23$ which is not a square in \mathbb{Q} , so the Galois group is S_3 .
- (b) By Eisenstein's Criterion for the prime 2 (or 5), $x^3 10$ is irreducible over \mathbb{Q} . The discriminant is $-4(0)^3 27(10)^2 = -2700$ which is not a square in \mathbb{Q} , so the Galois group is S_3 .

Proposition 0.13 (Exercise 1f). Let $f(x) = x^4 - 5$. The Galois group of f is

- 1. D_8 (the dihedral group with 8 elements) over \mathbb{Q} .
- 2. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ over $\mathbb{Q}(\sqrt{5})$.
- 3. $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ over $\mathbb{Q}(\sqrt{-5})$.
- 4. $\mathbb{Z}/4\mathbb{Z}$ over $\mathbb{Q}(i)$.

Proof. First we compute the Galois group over \mathbb{Q} . Note that f is irreducible over \mathbb{Q} by Eisenstein's criterion (at the prime 5). Let α be a real root of f. Then the set of roots is $\{\pm \alpha, \pm i\alpha\}$, and $[\mathbb{Q}(\alpha) : \mathbb{Q}] = \deg f = 4$, so the splitting field of f is $\mathbb{Q}(\alpha, i)$. We know that $\mathbb{Q}(\alpha) \cap \mathbb{Q}(i)$ has degree 1 or 2 over \mathbb{Q} , but the degree is not 2 since α is real. Thus $[\mathbb{Q}(\alpha) \cap \mathbb{Q}(i) : \mathbb{Q}] = 1$ so $\mathbb{Q}(\alpha) \cap \mathbb{Q}(i) = \mathbb{Q}$.

Note that $\mathbb{Q}(i)$ is Galois over \mathbb{Q} , so by Theorem 1.12 (Lang pg 266), $\mathbb{Q}(\alpha, i)$ is Galois over $\mathbb{Q}(\alpha)$. We also know that $\mathbb{Q}(\alpha, i)$ is Galois over $\mathbb{Q}(i)$, since it is the splitting field of f over $\mathbb{Q}(i)$. Thus we can write the degrees in the following diagram, along with "Gal" for Galois extensions:

Since the Galois group of $\mathbb{Q}(\alpha, i)$ over $\mathbb{Q}(\alpha)$ has order 2, so there exists an automorphism $\tau: \mathbb{Q}(\alpha, i) \to \mathbb{Q}(\alpha, i)$ over $\mathbb{Q}(\alpha)$ mapping i to -i. This implies that $\tau^2 = \mathrm{Id}$. Since $\mathrm{Gal}(\mathbb{Q}(\alpha, i)/\mathbb{Q}(i))$ acts transitivly on the roots of f, there exists an automorphism σ over $\mathbb{Q}(i)$ such that $\sigma(\alpha) = i\alpha$. Then

$$\sigma^2(\alpha) = -\alpha \qquad \sigma^3(\alpha) = -i\alpha$$

so $\sigma, \sigma^2, \sigma^3$ are all distinct. Thus $G = \operatorname{Gal}(\mathbb{Q}(\alpha, i)/\mathbb{Q})$ has an element τ of order 2 and an element σ of order 4, so these elements generate G. Further,

$$\tau \sigma(\alpha) = \tau(i\alpha) = -i\alpha$$
 $\sigma^3 \tau(\alpha) = \sigma^3(\alpha) = -i\alpha$

$$\tau \sigma(i) = \tau(i) = -i$$

$$\sigma^3 \tau(i) = \sigma^3(-i) = -i$$

so $\tau \sigma = \sigma^3 \tau$. Thus

$$G = \langle \sigma, \tau \mid \tau \sigma \tau^{-1} = \sigma^3 \rangle$$

which is precisely the standard presentation of the dihedral group with 8 elements, D_8 .

Now consider f over $\mathbb{Q}(\sqrt{5}) = \mathbb{Q}(\alpha^2)$. Let $G = \operatorname{Gal}(\mathbb{Q}(\alpha, i)/\mathbb{Q}(\alpha^2))$. We know that G has order 4 using the tower rule, since $\mathbb{Q}(\alpha^2)$ has degree 2 over \mathbb{Q} . An automorphism of $\mathbb{Q}(\alpha, i)$ over $\mathbb{Q}(\alpha^2)$ must permute the set of roots and fix α^2 . So if $\sigma \in G$, then

$$\sigma(\alpha^2) = \sigma(\alpha)^2 = \alpha^2 \implies \sigma(\alpha) = \pm \alpha$$

Two such automorphisms are $\sigma = (\alpha - \alpha)$ and $\tau = (\alpha - \alpha)(i\alpha - i\alpha)$. We can see easily that τ, σ both square to the identity. Thus G is a group of order four with two elements of order 2, so $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Now consider f over $\mathbb{Q}(\sqrt{-5}) = \mathbb{Q}(i\alpha^2)$, and let G be the Galois group. |G| = 4 using the tower law. Elements of G must permute $\{\pm \alpha, \pm i\alpha\}$, and fix $i\alpha^2$. Two such permutations are $(\alpha - \alpha)(i\alpha - i\alpha)$ and $(\alpha i\alpha)(-\alpha - i\alpha)$ which both square to zero, so G has two elements of order 2, so it must be $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Now consider f over $\mathbb{Q}(i)$. Once again, the Galois group has order 4, and the automorphism τ of $\mathbb{Q}(\alpha,i)$ over $\mathbb{Q}(i)$ defined by the cycle $(\alpha \ i\alpha - \alpha - i\alpha)$ is of order 4. Thus G is cyclic, so $G \cong \mathbb{Z}/4\mathbb{Z}$.

Proposition 0.14 (Exercise 1g). Let $f(x) = x^4 - a$ where $a \in \mathbb{Z}$ and $a \neq 0$, $a \neq \pm 1$, and a is square free. Then the Galois group of f over \mathbb{Q} is D_8 .

Proof. Let α be a root of f in some splitting field. Then we can factor f as

$$x^{4} - a = (x^{2} - \alpha^{2})(x^{2} + \alpha^{2}) = (x - \alpha)(x + \alpha)(x - i\alpha)(x + i\alpha)$$

Thus the splitting field of f is $\mathbb{Q}(i,\alpha)$. let $G = \operatorname{Gal}(\mathbb{Q}(i,\alpha)/\mathbb{Q})$. $\mathbb{Q}(\alpha,i)/\mathbb{Q}(\alpha)$ is Galois because it is degree 2, so there exists $\tau : \mathbb{Q}(\alpha,i) \to \mathbb{Q}(\alpha,i)$ fixing α and taking i to -i. Since $\mathbb{Q}(\alpha,i)$ is the splitting field of f over $\mathbb{Q}(i)$, this extension is also Galois, so there exists $\sigma : \mathbb{Q}(\alpha,i) \to \mathbb{Q}(\alpha,i)$ fixing i and mapping α to $i\alpha$. Then $\sigma, \sigma^2, \sigma^3, \sigma^4$ are all distinct, and live in a group of order 4, so σ has order 4. Since $\tau \notin \langle \sigma \rangle$, G is generated by τ, σ . As always (see 1n), $\tau \sigma \tau^{-1} = \sigma^3$, so $G \cong D_8$.

Proposition 0.15 (Exercise 1h). Let $a \in \mathbb{Z}$ be square free and ≥ 2 . Then the Galois group of $x^3 - a$ over \mathbb{Q} is S_3 .

Proof. Since a is square free, it is not a cube, so $x^3 - a$ has no roots in \mathbb{Q} , so it is irreducible. The discriminant is $-27a^2$, which is not a square in \mathbb{Q} , so the Galois group is S_3 .

Proposition 0.16 (Exercise 1i). Let $f(x) = x^4 + 2$. The Galois group of f over \mathbb{Q} is D_8 . The Galois group of f over $\mathbb{Q}(i)$ is $\mathbb{Z}/4\mathbb{Z}$.

Proof. We can factor f linearly as

$$x^{4} + 2 = (x^{2} - i\sqrt{2})(x^{2} + i\sqrt{2}) = (x - \alpha)(x + \alpha)(x - i\alpha)(x + i\alpha)$$

where

$$\alpha = \frac{\sqrt{2}}{2}(1+i)\sqrt[4]{2} = \frac{(\sqrt[4]{2})^3(1+i)}{2}$$

Thus the splitting field of f over \mathbb{Q} is $\mathbb{Q}(\alpha, i)$. $\mathbb{Q}(\alpha, i)$ is Galois over $\mathbb{Q}(\alpha)$ because it is degree 2, so there exists an automorphism τ of $\mathbb{Q}(\alpha, i)$ over $\mathbb{Q}(\alpha)$ mapping i to -i. Since $\mathbb{Q}(\alpha, i)$ is Galois over $\mathbb{Q}(i)$ (because it is the splitting field of f over $\mathbb{Q}(i)$), there exists an automorphism σ of $\mathbb{Q}(\alpha, i)$ over $\mathbb{Q}(i)$ such that $\sigma(\alpha) = i\alpha$. Then $\sigma, \sigma^2, \sigma^3, \sigma^4$ are all distinct, and σ lives inside a group of order 4, so σ has order 4. Note that $\tau \neq \sigma^k$ for any k, so the Galois group G of $\mathbb{Q}(\alpha, i)$ over \mathbb{Q} is generated by σ, τ . We have the relation $\tau \sigma \tau^{-1} = \sigma^3$ (see 1n for same reasoning), so $G \cong D_8$.

Over $\mathbb{Q}(i)$, the Galois group of $\mathbb{Q}(\alpha, i)$ still is generated by σ , so the Galois group is cyclic of order 4.

Lemma 0.17 (for Exercise 1jk). Let p_1, \ldots, p_n be primes. For each i, let $K_i = \mathbb{Q}(\sqrt{p_i})$ be the splitting field of $x^2 - p_i$ over \mathbb{Q} . Then

$$K_n \cap (K_1 \dots K_{n-1}) = \mathbb{Q}$$

Proof. Suppose the intersection is not empty. Then $\sqrt{p_n}$ lies in $K_1 \dots K_{n-1}$, so it can be written as a multivariate polynomial in the $\sqrt{p_j}$,

$$\sqrt{p_n} = \sum_{i} \left(a_i \prod_{j} \sqrt{p_j} \right)$$

where $a_i \in \mathbb{Q}$. Taking the square of both sides, we see that p_n can be written as

$$p_n = \left(\sum_i \left(a_i \prod_j \sqrt{p_j}\right)\right)^2$$

Thus the RHS must be an integer. This implies that all of the $\sqrt{p_j}$ terms are zero, so

$$\sqrt{p_n} = \sum_i a_i$$

But now the RHS is rational, but this is a contradiction, since the square root of a prime is never rational. \Box

Proposition 0.18 (Exercise 1jk). Let $p_1, \ldots p_n$ be distinct primes in \mathbb{N} . Then the Galois group of

$$f(x) = (x^2 - p_1) \dots (x^2 - p_n)$$

 $over \mathbb{Q}$ is

$$\prod_{i=1}^{n} \mathbb{Z}/2\mathbb{Z}$$

(this is 1k). As a consequence, the Galois group of $(x^2-2)(x^2-3)(x^2-5)(x^2-7)$ over \mathbb{Q} is $\prod_{i=1}^4 \mathbb{Z}/2\mathbb{Z}$ (this is 1j).

Proof. Let K_i be the splitting field of $x^2 - p_i$. Then the splitting field of f is the compositum $K_1 \dots K_n$ in $\overline{\mathbb{Q}}$. The Galois group of K_i/\mathbb{Q} is $\mathbb{Z}/2\mathbb{Z}$ since it is a quadratic. By the previous lemma

$$K_{i+1} \cap (K_1 \dots K_i) = \mathbb{Q}$$

for each i = 1, ..., n - 1. Then applying Corollary 1.1t (Lang pg 267), the Galois group of the compositum $K_1 ... K_n$ is the product of the Galois groups $K_1, ..., K_n$.

$$\operatorname{Gal}(f) \cong \prod_{i=1}^{n} \mathbb{Z}/2\mathbb{Z}$$

To get the Galois group of $(x^2 - 2)(x^2 - 3)(x^2 - 5)(x^2 - 7)$, just take $p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7$.

Proposition 0.19 (Exercise 1 ℓ). The Galois group of $f(x) = (x^3 - 2)(x^3 - 3)(x^2 - 2)$ over $\mathbb{Q}(\sqrt{-3})$ is $A_3 \times A_3 \times \mathbb{Z}/2\mathbb{Z}$. (Another way to write this group is $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2$.)

Proof. Note that each of x^3-2 , x^3-3 , and x^2-2 are irreducible over $\mathbb{Q}(\sqrt{-3})$, since they have no roots. The Galois group of x^2-2 is $\mathbb{Z}/2\mathbb{Z}$, as for all quadratics. The Galois group of x^3-2 is A_3 since the discriminant is $-108=(6\sqrt{-3})^2$. The Galois group of x^3-3 is A_3 , since the discriminant is $-3^5=(9\sqrt{-3})^2$, which is a square in $\mathbb{Q}(\sqrt{-3})$.

The Galois group of f embeds into the product of these groups, by Corollary 1.15. By the same kind of logic as in Lemma 0.17, the intersection of the splitting fields of these polynomials over $\mathbb{Q}(\sqrt{-3})$ is just $\mathbb{Q}(\sqrt{-3})$, so this embedding is an isomorphism.

Proposition 0.20 (Exercise 1m). Let t be transcendental over \mathbb{C} and $n \in \mathbb{N}$, and let $f(x) = x^n - t$. Then the Galois group of f over $\mathbb{C}(t)$ is $\mathbb{Z}/n\mathbb{Z}$.

Proof. Let ω be a root of f in some splitting field, and let β be a primitive nth root of unity. Then

$$\{\omega,\beta\omega,\ldots,\beta^{n-1}\omega\}$$

are all roots of f, since $(\beta^k \omega)^n = \beta^{nk} \omega^n = \omega^n = t$. Thus these are all the roots of f, since f can't have more than n roots. Thus the splitting field of f is $\mathbb{C}(\omega)$. Elements of $G = \operatorname{Gal}(\mathbb{C}(\omega)/\mathbb{C}(t))$ permute the roots and fix \mathbb{C} . In particular, they fix β , so an element of G is determined by how it acts on ω , so

$$G = {\sigma_i : 0 \le i \le n - 1}$$

where $\sigma_i(\omega) = \beta^i \omega$. We can see that σ_1 generates G, so $G \cong \mathbb{Z}/n\mathbb{Z}$.

Proposition 0.21 (Exercise 1n). Let t be transcendental over \mathbb{C} . Let $f(x) = x^4 - t$. The Galois group of f over \mathbb{R} is D_8 .

Proof. Let ω be a root of f is some splitting field. Then we can factor f as

$$x^{4} - t = (x^{2} - \omega^{2})(x^{2} + \omega^{2}) = (x - \omega)(x + \omega)(x - i\omega)(x + i\omega)$$

Thus $\mathbb{R}(\omega, i)$ is the splitting field for f. Note that $[\mathbb{R}(i) : \mathbb{R}] = 2$ since $\deg \operatorname{Irr}(i, \mathbb{R}) = \deg(x^2 + 1) = 2$. Also note that $\mathbb{R}(\omega, i)$ is the splitting field of f over $\mathbb{R}(i)$, and $[\mathbb{R}(\omega, i) : \mathbb{R}(i)] = 4$ since $\deg(\operatorname{Irr}(\omega, \mathbb{R}(i))) = \deg f = 4$, so $\mathbb{R}(\omega, i)/\mathbb{R}(i)$ is Galois. So we have the following diagram of field extensions, with degrees.

Since $\mathbb{R}(\omega, i)/\mathbb{R}(\omega)$ is degree 2, it is Galois, so there exists an automorphism τ over $\mathbb{R}(\omega)$ such that $\tau(i) = -i$, and $\tau^2 = \mathrm{Id}$. Since $\mathbb{R}(\omega, i)/\mathbb{R}(i)$ is Galois, there exists an automorphism σ of $\mathbb{R}(\omega, i)$ over $\mathbb{R}(i)$ sending ω to $i\omega$. Then $\sigma, \sigma^2, \sigma^3, \sigma^4$ are all distinct, so $|\sigma| = 4$. Let $G = \mathrm{Gal}(\mathbb{R}(\omega, i)/\mathbb{R})$. Note that $\tau \notin \langle \sigma \rangle$, and that |G| = 8. Thus we have τ, σ in G of order 2 and 4 generating disjoint subgroups, so $G = \langle \tau, \sigma \rangle$. We can check that $\tau \sigma \tau^{-1} = \sigma^3$, so $G \cong D_8$. We just have to check that they agree on ω and i.

$$\tau \sigma \tau^{-1}(i) = \tau \sigma(-i) = \tau(-i) = i \qquad \sigma^{3}(i) = i$$

$$\tau \sigma \tau^{-1}(\omega) = \tau \sigma(\omega) = \tau(i\omega) = -i\omega \qquad \sigma^{3}(\omega) = i^{3}\omega = -i\omega$$

Proposition 0.22 (Exercise 2). For each of the following polynomials, we compute the Galois group over \mathbb{Q} .

a)
$$x^3 + x + 1$$
, $G = S_3$

b)
$$x^3 - x + 1$$
, $G = S_3$

c)
$$x^3 + 2x + 1$$
, $G = S_3$

d)
$$x^3 - 2x + 1$$
, $G = \mathbb{Z}/2\mathbb{Z}$

e)
$$x^3 - x - 1$$
, $G = S_3$

f)
$$x^3 - 12x + 8$$
, $G = A_3$

g)
$$x^3 + x^2 - 2x - 1$$
, $G = A_3$

Proof. (a) By the integral root test, the only possible rational roots are ± 1 , and we check that these are not roots, so $x^3 + x + 1$ is irreducible. The discriminant is -31, which is not a square, so the Galois group is S_3 .

(b) By the integral root test, the only possible rational roots are ± 1 , which we can check are not roots, so $x^3 - x + 1$ is irreducible. The discriminant is -23, which is not a square, so the Galois group is S_3 .

(c) By the integral root test, the only possible rational roots are ± 1 , which are not roots, so $x^3 + 2x + 1$ is irreducible over \mathbb{Q} . The discriminant is -59, which is not a square, so the Galois group is S_3 .

(d) We can factor $x^3 - 2x + 1$ as $(x - 1)(x^2 + x - 1)$, so the splitting field of $x^3 - 2x + 1$ over \mathbb{Q} is the splitting field of $x^2 + x - 1$. This is a quadratic extension, so the Galois group is $\mathbb{Z}/2\mathbb{Z}$.

(e) By the integral root test, the only possible rational roots are ± 1 , which are not roots, so $x^3 - x - 1$ is irreducible. The discriminant is -23, which is not a square, so the Galois group is S_3 .

(f) By the integral root test, the only possible rational roots are $\pm 1, \pm 2, \pm 4, \pm 8$, which we check tediously are not roots of $x^3 - 12x + 8$, so it is irreducible over \mathbb{Q} . The discriminant is 5184, which is a square (5184 = 72²), so the Galois group is A_3 .

(g) By substituting $x = y + \frac{1}{3}$, we get

$$x^3 + x^2 - 2x - 1 = y^3 - \frac{7}{3}y - \frac{7}{27}$$

So the Galois group of the polynomial in x is the same as the Galois group of the polynomial in y. By the integral root test, it is irreducible over \mathbb{Q} . The discriminant is 49, which is a square, so the Galois group is A_3 .

Proposition 0.23 (Exercise 5a). Let k be a field of characteristic $\neq 2, 3$. Let $f \in k[x]$ be an irreducible cubic with discriminant $D \in k$ and let $g = x^2 - c \in k[x]$ be irreducible. Suppose that

$$[k(\sqrt{D}):k]=2$$
 $k(\sqrt{D}) \neq k(\sqrt{c})$

Let L be the splitting field of fg. Then [L:k] = 12.

Proof. Let K_f be the splitting field of f and let $K_g = k(\sqrt{c})$ be the splitting field of g. Then $L = K_g K_f$ (in some algebraic closure), and we can draw the following diagram of field extensions:

Since char $k \neq 2,3$, f and g can't have repeated roots, so all the above extensions are separable. The extensions K_g/k , K_f/k , and K_gK_f/k are all normal, as they are splitting fields. Then by Theorem 3.4 (Lang pg 238), K_gK_f/K_g and K_gK_f/K_f are normal. Thus all the extensions in the diagram are Galois.

Because g is irreducible, $\sqrt{c} \notin k$, so $[k(\sqrt{c}):k]=2$. Note that $k(\sqrt{D})$ is the splitting field of $x^2-D\in k[x]$, since $[k(\sqrt{D}):k]=2$, this implies that D is not a square in k. Thus by the theorem on page 270 of Lang, the Galois group of K_f/k is S_3 . Since K_f is a splitting field of a cubic, by Exercise 8 (last homework), $[K_f:k]$ divides 6. But the size of the Galois group cannot exceed the degree of the extension, so $[K_f:k]=6$.

We claim that $K_g \cap K_f = k$. Since $k(\sqrt{c}) \neq k(\sqrt{D})$, \sqrt{c} cannot be a root of f, so $\sqrt{c} \notin K_f$. Thus $K_f \cap K_g = k$. Then applying Theorem 1.12 (Lang pg 266), we get that $[K_g K_f : K_f] = 2$ and $[K_g K_f : K_g] = 6$.

Then by the multiplicative tower law, $[K_gK_f:k]=12$.

Proposition 0.24 (Exercise 5b). Let k be a field of characteristic $\neq 2, 3$. Let $f \in k[x]$ be an irreducible cubic with discriminant D and a root α (in an algebraic closure). Let $g = x^2 - c \in k[x]$ be irreducible with a root β . Suppose that

$$[k(\sqrt{D}):k]=2$$
 $k(\sqrt{D}) \neq k(\sqrt{c})$

Let $\gamma = \alpha + \beta$. Then

$$[k(\gamma):k] = 6$$

Proof. We have $k(\gamma) \subset k(\alpha, \beta)$, and $[k(\alpha) : k] = \deg f = 3$ and $[k(\beta) : k] = \deg g = 2$. Then using Corollary 1.13 and the tower law and the fact that 2 and 3 are coprime, we can conclude that $[k(\alpha, \beta) : k(\alpha)] = 2$ and $[k(\alpha, \beta) : k(\beta)] = 3$, so $[k(\alpha, \beta) : k] = 3$.

Thus $[k(\gamma):k] \leq 6$. Since $k(\alpha,\beta)/k$ is a separable extension with degree 6, there are 6 distinct embeddings of $k(\alpha,\beta)$ over k into \overline{k} (algebraic closure of k). Let $\alpha_1,\alpha_2,\alpha_3\in\overline{k}$ be the roots of f. Then the 6 embeddings of $k(\alpha,\beta)$ over k into \overline{k} are determined by sending α to some α_i and sending β to $\pm\beta$. So we have σ_i^{\pm} where $\sigma_i^{\pm}(\alpha) = \alpha_i$ and $\sigma_i^{\pm}(\beta) = \pm\beta$.

$$\sigma_1^+(\alpha) = \alpha_1 \qquad \sigma_1^+(\beta) = \beta$$

$$\sigma_2^+(\alpha) = \alpha_2 \qquad \sigma_2^+(\beta) = \beta$$

$$\sigma_3^+(\alpha) = \alpha_3 \qquad \sigma_3^+(\beta) = \beta$$

$$\sigma_1^-(\alpha) = \alpha_1 \qquad \sigma_1^-(\beta) = -\beta$$

$$\sigma_2^-(\alpha) = \alpha_2 \qquad \sigma_2^-(\beta) = -\beta$$

$$\sigma_3^-(\alpha) = \alpha_3 \qquad \sigma_3^-(\beta) = -\beta$$

Then we restrict each σ_i^{\pm} to an embedding of $k(\gamma)$ over k into \overline{k} . Restricted to $k(\gamma)$, they are determined by $\sigma_i^{\pm}(\gamma) = \sigma_i^{\pm}(\alpha) + \sigma_i^{\pm}(\beta) = \alpha_i \pm \beta$.

We claim that the six elements $\alpha_i \pm \beta$ for i = 1, 2, 3 are all distinct. Since each α_i is distinct, $\alpha_1 + \beta$, $\alpha_2 + \beta$, $\alpha_3 + \beta$ are distinct, and likewise for $\alpha_i - \beta$. Suppose $\alpha_i + \beta = \alpha_j - \beta$ for some $i \neq j$. This implies $\alpha_j - \alpha_i = 2\beta$, which would imply that the splitting field of f contains $k(\beta)$. But by hypothesis, D is not a square in k so the Galois group of f over k is S_3 , which has a unique index two subgroup. Using the Galois correspondence, there is a unique degree 2 subextension between f and its splitting field, which is $k(\sqrt{D})$, which is not $k(\beta)$ by hypothesis. Thus the splitting field of f cannot contain $k(\beta)$, so we can conclude that all the $\alpha_i \pm \beta$ are distinct.

Thus there are six distinct embeddings of $k(\gamma)$ over k into \overline{k} , so $[k(\gamma):k] \geq [k(\gamma):k]_s = 6$. Combining this with the opposite inequality, we get $[k(\gamma):k] = 6$.

Proposition 0.25 (Exercise 7a). Let $K = \mathbb{Q}(\sqrt{a})$ where $a \in \mathbb{Z}$, a < 0. Then K cannot be embedded in a cyclic extension whose degree over \mathbb{Q} is divisible by 4.

Proof. Suppose that there exists a field L such that $\mathbb{Q} \subset K \subset L$ such that L/\mathbb{Q} is cyclic of degree divisible by 4. We may assume all these fields lie in an algebraic closure of \mathbb{Q} which is contained in \mathbb{C} . Let $G = \operatorname{Gal}(L/\mathbb{Q})$, so G is cyclic of order 4n. Let σ be a generator.

Since L/\mathbb{Q} is Galois, it is separable, so L/K is separable. Then by the Primitive Element Theorem there exists $\alpha \in L$ such that $L = K(\alpha) = \mathbb{Q}(\sqrt{a}, \alpha)$.

Note that $K = \mathbb{Q}(\sqrt{a})$ is the splitting field of $x^2 - a$ over \mathbb{Q} , which is irreducible as it has no roots in \mathbb{Q} , so $[K : \mathbb{Q}] = 2$. Then by the Galois correspondence, $\operatorname{Gal}(L/K)$ is an index-2 subgroup of $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma \rangle$. The only index-2 subgroup is $\langle \sigma^2 \rangle$, so $\operatorname{Gal}(L/K) = \langle \sigma^2 \rangle$. (A finite cyclic group of order m has a unique subgroup of order d for each divisor d of m.) Hence $\sigma^2, \sigma^4, \ldots, \sigma^{4n}$ are all automorphisms of L over K. In particular, σ^{2n} fixes K.

By the tower law,

$$[K:\mathbb{Q}(\alpha)\cap K][\mathbb{Q}(\alpha)\cap K:\mathbb{Q}]=2$$

so one of them must be 1 and the other must be 2. We consider these in two separate cases. We reach a contradiction in both cases.

Case 1: First suppose $[\mathbb{Q}(\alpha) \cap K : \mathbb{Q}] = 2$. Then $\mathbb{Q}(\alpha) \cap K = K$, which implies $K \subset \mathbb{Q}(\alpha)$, which implies $L = \mathbb{Q}(\alpha)$.

$$L = \mathbb{Q}(\alpha)$$

$$\begin{vmatrix} 2n \\ K = \mathbb{Q}(\sqrt{a}) \\ 2 \\ \mathbb{Q} \end{vmatrix}$$

Let $\tau: \mathbb{C} \to \mathbb{C}$ be complex conjugation $(x+iy \mapsto x-iy)$. It restricts to an automorphism of L over \mathbb{Q} , so $\tau \in G = \operatorname{Gal}(L/\mathbb{Q})$. Since a < 0, we can think of \sqrt{a} as $i\sqrt{-a}$, and then

$$\tau(\sqrt{a}) = \tau(i\sqrt{-a}) = -i\sqrt{-a} = -\sqrt{a}$$

Thus τ does not fix K, so τ is not the identity. Since $\tau^2 = \operatorname{Id}$, it has order 2. But there is a unique element of order 2 in $G = \langle \sigma \rangle$, namely σ^{2n} . As previously shown, σ^{2n} is an automorphism over K, so we reach a contradiction. This rules out Case 1 as a possibility.

Case 2: Now suppose $[\mathbb{Q}(\alpha) \cap K : \mathbb{Q}] = 1$, which immediately implies $\mathbb{Q}(\alpha) \cap K = \mathbb{Q}$. Applying Theorem 1.12 (Lang pg 266), we can fill in the degrees on the following diagram.

Then by the Galois correspondence, $\operatorname{Gal}(L(\mathbb{Q}(\alpha)))$ is a subgroup of $G = \operatorname{Gal}(L/\mathbb{Q})$ of index 2, so it must be $\langle \sigma^2 \rangle$. In particular, $\sigma^{2n} \in \operatorname{Gal}(L/\mathbb{Q}(\alpha))$, so σ^{2n} fixes $\mathbb{Q}(\alpha)$. Since σ^{2n} also

fixes K, this implies that σ^{2n} fixes all of L. Thus $\sigma^{2n} = \operatorname{Id}_L$, but this is a contradiction since σ has order 4n.

We reached a contradiction in both Case 1 and Case 2, so we conclude that no such field extension L exists.

Lemma 0.26 (for Exercise 7c). Let k be a field of characteristic $\neq 2$, and let $f(x) = x^4 + ax^2 + b \in k[x]$ be irreducible with roots $\pm \alpha, \pm \beta$ in an algebraic closure. Let G be the Galois group of f. Then

- 1. If b is a square in k, then $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 2. If b is not a square in k and $b(a^2-4b)$ is a square in k, then $G \cong \mathbb{Z}/4\mathbb{Z}$.

Proof. We know that G is a transitive subgroup on the symmetric group on the set $\{\pm \alpha, \pm \beta\}$. Any $\sigma \in G$ must also satisfy $\sigma(-\alpha) = -\sigma(\alpha)$ and $\sigma(-\beta) = -\sigma(\beta)$ since it must fix k. The subgroup of S_4 on these letters that satisfies these two relations is (using cycle notation)

$$H = \{ id, (\alpha - \alpha), (\beta - \beta), (\alpha \beta)(-\alpha - \beta), (\alpha - \beta)(-\alpha \beta), (\alpha \beta - \alpha - \beta), (\alpha - \beta - \alpha \beta), (\alpha - \alpha)(\beta - \beta) \}$$

This H has three transitive subgroups: all of H, and

$$H_1 = \{ id(\alpha - \alpha)(\beta - \beta), (\alpha \beta)(-\alpha - \beta), (\alpha - \beta)(-\alpha \beta) \} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

$$H_2 = \{ id, (\alpha - \alpha)(\beta - \beta), (\alpha \beta - \alpha - \beta), (\alpha - \beta - \alpha \beta) \} \cong \mathbb{Z}/4\mathbb{Z}$$

Note that f factors as

$$f(x) = x^4 + ax^2 + b = (x^2 - \alpha^2)(x^2 - \beta^2) \implies b = (\alpha\beta)^2 \text{ and } a = -\alpha^2 - \beta^2$$

Now we can prove (1). If b is a square in k, since $b = (\alpha \beta)^2$, we get $\alpha \beta \in k$. Then applying $\tau_1 = (\alpha - \beta - \alpha \beta) \in H_2$ to $\alpha \beta$,

$$\tau_1(\alpha\beta) = \tau_1(\alpha)\tau_1(\beta) = -\beta\alpha$$

thus τ_1 does not fix $\alpha\beta$, which is an element of k, so $\tau_1 \notin G$. Thus in this case, $G = H_1 \cong \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$.

Now we prove (2). Suppose $b(a^2 - 4b)$ is a square in k. We can rewrite it as

$$b(a^{2} - 4b) = \alpha^{2}\beta^{2}((-\alpha^{2} - \beta)^{2} - 4\alpha^{2}\beta^{2}) = \alpha^{2}\beta^{2}(\alpha^{4} + 2\alpha^{2}\beta^{2} + \beta^{4} - 4\alpha^{2}\beta^{2})$$
$$= \alpha^{2}\beta^{2}(\alpha^{4} - 2\alpha^{2}\beta^{2} + \beta^{4}) = \alpha^{2}\beta^{2}(\alpha^{2} - \beta^{2})^{2} = (\alpha\beta(\alpha^{2} - \beta^{2}))^{2}$$

so if $b(a^2-4b)$ is a square in k, then $\alpha\beta(\alpha^2-\beta^2) \in k$. Then applying $\tau_2 = (\alpha \beta)(-\alpha-\beta) \in H_1$ to $\alpha\beta(\alpha^2-\beta^2)$, we get

$$\tau_2\left(\alpha\beta(\alpha^2-\beta^2)\right) = \tau_2(\alpha)\tau_2(\beta)\left(\tau_2(\alpha)^2 - \tau_2(\beta)^2\right) = \beta\alpha\left(\beta^2 - \alpha^2\right) = -\alpha\beta(\alpha^2 - \beta^2)$$

Thus τ_2 does not fix $\alpha\beta(\alpha^2-\beta^2)$, which lies in k, so $\tau_2 \notin G$. Since $\tau_2 \in H_1$, this implies that $G = H_2 \cong \mathbb{Z}/4\mathbb{Z}$.

Proposition 0.27 (Exercise 7b). Let $f(x) = x^4 + 30x^2 + 45$. Let α be a root of f in an algebraic closure of \mathbb{Q} . Then $\mathbb{Q}(\alpha)$ is cyclic of degree 4 over \mathbb{Q} .

Proof. Note that f is irreducible by Eisenstien's Criterion with p=5. Let K_f be the splitting field of f in an algebraic closure of \mathbb{Q} . The roots of f are $\pm \eta, \pm \beta \in K_f$ where

$$\eta = i\sqrt{15 + 6\sqrt{5}} \qquad \beta = i\sqrt{15 - 6\sqrt{5}}$$

We notice that $\eta^2 = -15 - 6\sqrt{5}$ and $\beta^2 = -15 + 6\sqrt{5}$, so $\mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\eta), \mathbb{Q}(\beta)$. So we have the following diagram,

We know that $[\mathbb{Q}(\sqrt{5}):\mathbb{Q}]=2$ since it is the splitting field of x^2-5 . We also know $[\mathbb{Q}(\eta):\mathbb{Q}(\sqrt{5})]=[\mathbb{Q}(\beta):\mathbb{Q}(\sqrt{5})]=2$ since they are the respective splitting fields of

$$x^2 - (-15 - 6\sqrt{5})$$
 $x^2 - (-15 + 5\sqrt{5})$

over $\mathbb{Q}(\sqrt{5})$. Using the previous lemma, we check that

$$b(a^2 - 4b) = 45(30^2 - 4(45)) = 32400 = 180^2$$

Since this is a square, the Galois group of K_f/\mathbb{Q} is $\mathbb{Z}/4\mathbb{Z}$, so $[K_f:\mathbb{Q}]=4$. But by the tower law,

$$[K_f:\mathbb{Q}] = [K_f:\mathbb{Q}(\eta)][\mathbb{Q}(\eta):\mathbb{Q}(\sqrt{5})][\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 4[K_f:\mathbb{Q}(\eta)] \le 4$$
$$[K_f:\mathbb{Q}] = [K_f:\mathbb{Q}(\beta)][\mathbb{Q}(\beta):\mathbb{Q}(\sqrt{5})][\mathbb{Q}(\sqrt{5}):\mathbb{Q}] = 4[K_f:\mathbb{Q}(\beta)] \le 4$$

which implies $[K_f : \mathbb{Q}(\beta)] = [K_f : \mathbb{Q}(\eta)] = 1$ which implies $\mathbb{Q}(\eta) = \mathbb{Q}(\beta) = \mathbb{Q}(-\eta) = \mathbb{Q}(-\beta) = K_f$. Since the Galois group of K_f/\mathbb{Q} is $\mathbb{Z}/4\mathbb{Z}$, this says that $\mathbb{Q}(\alpha)/\mathbb{Q}$ is cyclic of degree 4 for any root $(\pm \eta, \pm \beta)$ of f.

Proposition 0.28 (Exercise 7c). Let $f(x) = x^4 + 4x^2 + 2$. Then f is irreducible over \mathbb{Q} and the Galois group of f is cyclic.

Proof. By Eisenstein's Criterion at the prime 2, f is irreducible. The constant coefficient is not one, and

$$b(a^2 - 4b) = 2(4^2 - 4(2)) = 2(16 - 8) = 16 = 4^2$$

so by the previous lemma, the Galois group is $\mathbb{Z}/4\mathbb{Z}$.

For convenience, for Exercise 13, we list some low degree monic irreducible polynomials mod 2 and 3.

$\mathbb{F}_2[x]$		
Degree	Irreducibles	Reducibles
0	1	none
1	x, x + 1	none
2	$x^2 + x + 1$	$x^2 + 1$
3	$x^3 + x + 1, x^3 + x^2 + 1$	$x^3 + 1, x^3 + x^2 + x + 1$
4	$x^4 + x + 1, x^4 + x^3 + 1, x^4 + x^3 + x^2 + x + 1$	(everything else of degree 4)
	$\mathbb{F}_3[x]$	
		lucibles

I give a statement of the following theorem because Lang doesn't label it and doesn't state it in the way I want to frequently apply it, so that I can easily refer to it.

Theorem 0.29 (Dedekind). Let $f \in \mathbb{Z}[x]$ be monic, irreducible, and separable. Let $p \in \mathbb{Z}$ be prime and let $f_p \in \mathbb{F}_p[x]$ be the reduction of the coefficients of $f \mod p$. Let K be the splitting field of f. If f_p factors as a product

$$f_p(x) = \prod_{i=1}^r q_i(x)$$

where each q_i is irredubile (in $\mathbb{F}_p[x]$) with $d_i = \deg q_i$, then $\operatorname{Gal}(K/\mathbb{Q})$ contains an element of cycle type (d_1, \ldots, d_r) .

In particular, if $f_p(x)$ is irreducible in $\mathbb{F}_p[x]$, then the Galois group of f contains a cycle of length deg $f_p = \deg f$.

Lemma 0.30 (for Exercise 13). A subgroup of S_4 containing a 4-cycle and a 3-cycle is S_4 .

Proof. The 3-cycle and 4-cycle together generate a subgroup of size at least 12, so the subgroup must be either S_4 or A_4 . But A_4 has no elements of order 4, so it must be S_4 . \square

Proposition 0.31 (Exercise 13a). Let $f(x) = x^4 + 2x^2 + x + 3$. The Galois group of f over \mathbb{Q} is S_4 .

Proof. First note that f is separable (using a computer to check that it has 4 distinct roots in \mathbb{C}). Let G be the Galois group of f. Reducing f mod 2 we get $x^4 + x + 1$, which is irreducible (see table). Then by Theorem 0.29 above, G contains a 4-cycle. Reducing f mod 3, we get

$$x^4 + 2x^2 + x = x(x^3 + 2x + 1)$$

This cubic is irreducible over \mathbb{F}_3 because it has no roots (just check 0, 1, 2). Then by Theorem 0.29, G contains a 3-cycle. We know that G is (isomorphic to) a subgroup of S_4 , so by Lemma 0.30, $G \cong S_4$.

Proposition 0.32 (Exercise 13b). The Galois group of $f(x) = x^4 + 3x^3 - 3x - 2$ over \mathbb{Q} is S_4 .

Proof. First note that f is separable (use a computer to check that f has 4 distinct roots in \mathbb{C}). Let G be the Galois group of f. We know that G embeds in S_4 , since f has degree 4. Reducing f mod 2 we get $x^4 + x^3 + x = x(x^3 + x^2 + 1)$, which has an irreducible cubic (see table). Thus G contains a 3-cycle. Reducing f mod 5 we get $x^4 + 3x^3 + 2x + 3$, which is irreducible (checked via computer). Thus G contains a 4-cycle. Since G has a 4-cycle and a 3-cycle, it is S_4 .