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Chapter V

Proposition 0.1 (Exercise 20a). Let F ⊂ L be a field extension and let x ∈ L be transcen-
dental over F . Let K 6= F be an intermediate field satisfying

F ⊂ K ⊂ F (x)

Then x is algebraic over K.

Proof. Since K 6= F , there exists α ∈ K \ F . We know that

F (x) =

{
f(x)

g(x)
: f, g ∈ F [y], g(x) 6= 0

}
The requirement g(x) = 0 can be dropped, since x is transcendental over F . Since α ∈ K ⊂
F (x), we can write α as

α =
f(x)

g(x)
=⇒ αg(x)− f(x) = 0

for some f, g ∈ F [y]. Then define h(y) ∈ K[y] by h(y) = αg(y)− f(y). By the above, h has
x as a root. Also note that h cannot be the zero polynomial, since if it were, then αg = f ,
but f has coefficients in F and the coefficients of αg lie outside F , since α 6∈ F . Thus x is a
root of h ∈ K[y], so x is algebraic over K.

Proposition 0.2 (Gauss’s Lemma). Let R be a unique factorization domain with field of
fractions F . A non-constant polynomial in R[x] is irreducible in R[x] if and only if it is both
irreducible in F [x] and primitive (coefficients have gcd 1) in R[x].

Proposition 0.3 (Exercise 20b). Let F be a field and let x be transcendental over F . Let

y = f(x)
g(x)

be a rational function with f, g ∈ F [x]. Let n = max(deg f, deg g) and assume
n ≥ 1. Then

[F (x) : F (y)] = n
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Proof. We think of f, g as polynomials in F [x]. Then we can define

h(t) = f(t)− yg(t) ∈ F [y, t]

Note that F [y][t] = F [t][y] = F [y, t] ⊂ F (y)[t]. We claim that h is not the zero polynomial.
Since n ≥ 1, y is not in F . If h were zero, then f(t) = yg(t) and the leading coefficient of
f(t) is in F and the leading coefficient of yg(t) is not, which is a contradiction. Thus h is
not the zero polynomial.

By construction, x is a root of h, so the irreducible polynomial of x over F (y) divides
h. Note that F (y) is the quotient field of F [y]. As a polynomial in the variable y with
coefficients in F [t], h is linear, so it is irreducible. That is, h is irreducible in (F [t])[y], so it
is irreducible in F [y][t]. Then by Gauss’s Lemma (see above for statement), h is irreducible
in F (y)[t]. Thus h is the irreducible polynomial of x over F (y).

Finally, note that the degree of h as a polynomial in t with coefficients in F (y) is
max(deg f, deg g) = n. Then by Proposition 1.6 (Lang pg 227),

[F (y) : F (x)] = deg h = n

Proposition 0.4 (Exercise 24a). Let k be a field of characteristic p, and let t, u be al-
gebraically indepenent over k. Then k(t, u) has degree p2 over k(tp, up). Symbolically,
[k(t, u) : k(tp, up)] = p2.

Proof. We have the tower of fields

k(tp, up) ⊂ k(t, up) ⊂ k(t, u)

Since t, u are algebraically independent over k, tp does not have a pth root in k(tp, up), so
the polynomial f(x) = xp − tp ∈ k(tp, up)[x] is irreducible by Exercise 15 from previous
homework (Lang pg 254). Also, f splits linearly as

f(x) = xp − tp = (x− t)p

so f is the irreducible polynomial of t over k(tp, up), and the splitting field of f is k(t, up).
Thus by Proposition 1.4 (Lang pg 225),

[k(t, up) : k(tp, up)] = deg f = p

Similarly, up does not have a pth root in k(t, up), so the polynomial g(x) = xp−up ∈ k(t, up)[x]
is irreducible by Exercise 15. It splits linearly as

g(x) = xp − up = (x− u)p

so g is the irreducible polynomial of u over k(t, up), and the splitting field of g is k(t, u).
Thus by Proposition 1.4,

[k(t, u) : k(t, up)] = deg g = p

Then by multiplicativity of degrees for towers,

[k(t, u) : k(tp, up)] = [k(t, u) : k(t, up)][k(t, up) : k(tp, up)] = p2
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Proposition 0.5 (Exercise 24b). Let k be a field of characteristic p, and let t, u be alge-
braically independent over k. Then there are infinitely many extensions E such that

k(tp, up) ⊂ E ⊂ k(t, u)

Proof. By part (a), k(t, u) is a finite extension of k(tp, up), so we can apply the Primitive
Element Theorem. By the PET, there exists an element α ∈ k(t, u) such that k(tp, up, α) =
k(t, u) if and only if there are only a finite number of intermediate extensions E satisfying

k(tp, up) ⊂ E ⊂ k(t, u)

So in order to show that there are infinitely many extensions, we just need to show that such
an α does not exist. Suppose such an α exists. Since α ∈ k(t, u), we can write α as

α =
f(t, u)

g(t, u)

where f, g are polynomials in t, u with coefficients in k. Then raising to the pth power, since
char k = p,

αp =

(
f(t, u)

g(t, u)

)p
=
fp(tp, up)

gp(tp, up)
∈ k(tp, up)

where fp, gp indicate raising the coefficients from k to the pth power. Thus αp ∈ k(tp, up).
Thus the polynomial

xp − αp = (x− α)p

is in k(tp, up)[x], with α as a root, so Irr(α, k(tp, up)) divides xp − αp. In particular, it has
degree ≤ p. The degree of k(tp, up)(α) over k(tp, up) is bounded above by the degree of the
irreducible polynomial of α, so

[k(tp, up)(α) : k(tp, up)] ≤ p

By assumption, k(tp, up, α) = k(t, u), so

[k(t, u) : k(tp, up)] ≤ p

But we showed in part (a) that the degree above is precisely p2, which is decidedly not less
than p. Thus no such α exists, so by the reasoning at the beginning involving the PET,
there are infinitely manyintermediate extensions k(tp, up) ⊂ E ⊂ k(t, u).

Lemma 0.6 (for Exercise 25). Any finite field extension of a finite field is generated by a
single element.

Proof. Let k be finite and E/k a finite extension. Then E is finite, so E× = E \ {0} is a
cyclic multiplicative group. Let α be a generator. Then E = k(α).

The next lemma is the same claim as for Exercise 25, with the extra hypothesis that E/k is
purely inseparable. This is used for the proof of the more general statement.
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Lemma 0.7 (for Exercise 25). Let k be a field of characteristic p > 0, and let E be a finite,
purely inseparable extension of k. Let pr = [E : k]i. Suppose that there is no s < r so that
Epsk is separable over k. (Equivalently, αp

s
is separable over k for each α ∈ E.) Then E

can be generated by one element over k.

Proof. By hypothesis, there is no s < r such that βp
r

is separable over k for every β ∈ E.
Thus there exists α ∈ E such that αp

r−1
is not separable over k. Note that [k(α) : k]1 = 1

since E/k is purely inseparable. By Proposition 6.1 (Lang pg 251),

[k(α) : k] = pµ[k(α) : k]2 = pµ

for some µ ≥ 0, and αp
µ

is separable over k. If r < µ, then αp
r−1

is separable (using the
hypotheses) but αp

r−1
is not separable, so µ ≥ r. On the other hand, pµ = [k(α) : k] must

divide [E : k] = [E : k]i = pr, so µ ≤ r. Thus µ = r. Thus

pr = [E : k] = [E : k(α)][k(α) : k] = [E : k(α)]pµ = [E : k(α)]pr =⇒ [E : k(α)] = 1

which implies E = k(α).

Proposition 0.8 (Exercise 25). Let k be a field of characteristic p > 0, and let E be a finite
extension of k. Let pr = [E : k]i. Suppose that there is no s < r so that Epsk is separable
over k. (Equivalently, αp

s
is separable over k for each α ∈ E.) Then E can be generated by

one element over k.

Proof. We may assume that k is infinite, since if k is finite we apply Lemma 0.6.
By Proposition 6.6 (Lang pg 250), we can choose an intermediate field k ⊂ E0 ⊂ E so

that E/E0 is purely inseparable and E0/k is separable. By the Primitive Element Theorem
(Theorem 4.6 on pg 243 of Lang), E0 = k(α) for some α ∈ E0. By Lemma 0.7 above,
E = E0(β) for some β ∈ E. Thus E = k(α, β). We will use α, β to construct a primitive
element.

E = E0(β)

E0 = k(α)

k

purely inseparable

separable

By hypothesis, there exists µ ≥ 0 so that βp
µ

is separable over k. Thus βp
µ ∈ E0, since E0

is the maximal separable extension. Since E0 = k(α), using the PET there are only finitely
many subextensions k ⊂ F ⊂ E0. For δ ∈ k×, we have a subextension

k ⊂ k
(
αp

µ

+ δp
µ

βp
µ) ⊂ E0

since α, δ, βp
µ ∈ E0. By Exercise 15 of Chapter V (Lang pg 254) from previous homework,

E0 = k(α) = k
(
αp

n) ∀n ≥ 0
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Combining this with the fact that βp
µ ∈ E0,

E0 = k(α) = k
(
αp

µ)
= k

(
αp

µ

, βp
µ)

Because k is infinite, k× is infinite, so there are infinitely many distinct αp
µ

+ δp
µ
βp

µ
. Then

by the pigeonhole principle, there exist δ1, δ2 with δ1 6= δ2 so that

k̃ := k
(
αp

µ

+ δp
µ

1 β
pµ
)

= k
(
αp

µ

+ δp
µ

2 β
pµ
)

(This defines k̃.) Then(
αp

µ − δp
µ

1 β
pµ
)
−
(
αp

µ − δp
µ

2 β
pµ
)

=
(
δp

µ

1 − δ
pµ

2

)
βp

µ

= (δ1 − δ2)p
µ

βp
µ ∈ k̃

Since δ1 6= δ2, we have δ1− δ2 6= 0, so (δ1− δ2)p
µ ∈ k×, so βp

µ ∈ k̃. This implies that αp
µ ∈ k̃

as well. Thus
E0 = k

(
αp

µ

, βp
µ) ⊂ k̃

Since k̃ ⊂ E0, this implies that E0 = k̃. Finally, we claim that E = k(α + δβ). For
convenience, define δ = δ1. We already know that k(α + δβ) ⊂ E. Recall that E = k(α, β),
so to show the other inclusion we just need to show that α, β ∈ k(α + δβ). Note that

(α + δβ)p
µ

= αp
µ

+ δp
µ

βp
µ

=⇒ E0 = k
(
αp

µ

+ δp
µ

βp
µ) ⊂ k(α + δβ)

Since α ∈ E0, this implies α ∈ k(α + δβ). Since α + δβ is also in there, this gives us
δβ ∈ k(α + δβ), and since δ ∈ k× we get β ∈ k(α + δβ. Thus

E = k(α, β) = k(α + δβ)

so E is generated by a single element over k.

Chapter VI

Note: We use the notation D8 for the dihedral group with eight elements, which has the
presentation

〈 σ, τ | τ 2 = 1, τστ−1 = σ3 〉

We often use the fact that any group with 8 elements satisfying the above relations is
isomorphic to D8.

Lemma 0.9 (for Exercise 1). Let α be algebraic over Q. Then the quotient field of Z[α] is
Q(α).

Proof. By definition, Q(α) is the smallest subfield of C that contains Q and α, so it is also
the smallest subfield of C that contains Z and α, which is by definition the quotient field of
Z[α].
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Lemma 0.10 (for Exercise 1). Let k be a field, and let f(x) ∈ k[x] be irreducible and
separable. Let K be the splitting field of f , and let G be the Galois group of K over k. Then
G acts transitively on the roots of f .

Proof. From class.

Lemma 0.11 (for Exercise 1). Let k be a field and let f, g ∈ k[x] be irreducible. Let F,G be
the splitting fields of f, g respectively. Then the compositum FG is the splitting field of fg.

Proof. From class.

Proposition 0.12 (Exercise 1ab). .

a) The Galois group of x3 − x− 1 over Q is S3.

b) The Galois group of x3 − 10 over Q is S3.

Proof. As shown on page 270 of Lang, an irreducible cubic polynomial over a field with
characteristic 6= 2, 3 is S3 if and only if the discriminant is not a square in k. If it is, then
the Galois group is A3.

(a) By the integral root test, any root of x3 − x − 1 in Q must be ±1, but neither is a
solution, so f is irreducible. The discriminant is −4(−1)3 − 27(−1)2 = 4− 27 = −23 which
is not a square in Q, so the Galois group is S3.

(b) By Eisenstein’s Criterion for the prime 2 (or 5), x3 − 10 is irreducible over Q. The
discriminant is −4(0)3− 27(10)2 = −2700 which is not a square in Q, so the Galois group is
S3.

Proposition 0.13 (Exercise 1f). Let f(x) = x4 − 5. The Galois group of f is

1. D8 (the dihedral group with 8 elements) over Q.

2. Z/2Z× Z/2Z over Q(
√

5).

3. Z/2Z× Z/2Z over Q(
√
−5).

4. Z/4Z over Q(i).

Proof. First we compute the Galois group over Q. Note that f is irreducible over Q by
Eisenstein’s criterion (at the prime 5). Let α be a real root of f . Then the set of roots
is {±α,±iα}, and [Q(α) : Q] = deg f = 4, so the splitting field of f is Q(α, i). We know
that Q(α) ∩ Q(i) has degree 1 or 2 over Q, but the degree is not 2 since α is real. Thus
[Q(α) ∩Q(i) : Q] = 1 so Q(α) ∩Q(i) = Q.

Note that Q(i) is Galois over Q, so by Theorem 1.12 (Lang pg 266), Q(α, i) is Galois
over Q(α). We also know that Q(α, i) is Galois over Q(i), since it is the splitting field of
f over Q(i). Thus we can write the degrees in the following diagram, along with “Gal” for
Galois extensions:
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Q(α, i)

Q(α) Q(i)

Q

2

Gal

4

Gal

4 2

Gal

Since the Galois group of Q(α, i) over Q(α) has order 2, so there exists an automorphism
τ : Q(α, i) → Q(α, i) over Q(α) mapping i to −i. This implies that τ 2 = Id. Since
Gal(Q(α, i)/Q(i)) acts transitivly on the roots of f , there exists an automorphism σ over
Q(i) such that σ(α) = iα. Then

σ2(α) = −α σ3(α) = −iα

so σ, σ2, σ3 are all distinct. Thus G = Gal(Q(α, i)/Q) has an element τ of order 2 and an
element σ of order 4, so these elements generate G. Further,

τσ(α) = τ(iα) = −iα σ3τ(α) = σ3(α) = −iα
τσ(i) = τ(i) = −i σ3τ(i) = σ3(−i) = −i

so τσ = σ3τ . Thus
G = 〈 σ, τ | τστ−1 = σ3 〉

which is precisely the standard presentation of the dihedral group with 8 elements, D8.
Now consider f over Q(

√
5) = Q(α2). Let G = Gal(Q(α, i)/Q(α2)). We know that G has

order 4 using the tower rule, since Q(α2) has degree 2 over Q. An automorphism of Q(α, i)
over Q(α2) must permute the set of roots and fix α2. So if σ ∈ G, then

σ(α2) = σ(α)2 = α2 =⇒ σ(α) = ±α

Two such automorphisms are σ = (α − α) and τ = (α − α)(iα − iα). We can see easily
that τ, σ both square to the identity. Thus G is a group of order four with two elements of
order 2, so G ∼= Z/2Z× Z/2Z.

Now consider f over Q(
√
−5) = Q(iα2), and let G be the Galois group. |G| = 4 using

the tower law. Elements of G must permute {±α,±iα}, and fix iα2. Two such permutations
are (α −α)(iα − iα) and (α iα)(−α − iα) which both square to zero, so G has two elements
of order 2, so it must be Z/2Z× Z/2Z.

Now consider f over Q(i). Once again, the Galois group has order 4, and the automor-
phism τ of Q(α, i) over Q(i) defined by the cycle (α iα − α − iα) is of order 4. Thus G is
cyclic, so G ∼= Z/4Z.

Proposition 0.14 (Exercise 1g). Let f(x) = x4 − a where a ∈ Z and a 6= 0, a 6= ±1, and a
is square free. Then the Galois group of f over Q is D8.

Proof. Let α be a root of f in some splitting field. Then we can factor f as

x4 − a = (x2 − α2)(x2 + α2) = (x− α)(x+ α)(x− iα)(x+ iα)
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Thus the splitting field of f is Q(i, α). let G = Gal(Q(i, α)/Q). Q(α, i)/Q(α) is Galois
because it is degree 2, so there exists τ : Q(α, i) → Q(α, i) fixing α and taking i to −i.
Since Q(α, i) is the splitting field of f over Q(i), this extension is also Galois, so there exists
σ : Q(α, i) → Q(α, i) fixing i and mapping α to iα. Then σ, σ2, σ3, σ4 are all distinct, and
live in a group of order 4, so σ has order 4. Since τ 6∈ 〈σ〉, G is generated by τ, σ. As always
(see 1n), τστ−1 = σ3, so G ∼= D8.

Proposition 0.15 (Exercise 1h). Let a ∈ Z be square free and ≥ 2. Then the Galois group
of x3 − a over Q is S3.

Proof. Since a is square free, it is not a cube, so x3−a has no roots in Q, so it is irreducible.
The discriminant is −27a2, which is not a square in Q, so the Galois group is S3.

Proposition 0.16 (Exercise 1i). Let f(x) = x4 + 2. The Galois group of f over Q is D8.
The Galois group of f over Q(i) is Z/4Z.

Proof. We can factor f linearly as

x4 + 2 = (x2 − i
√

2)(x2 + i
√

2) = (x− α)(x+ α)(x− iα)(x+ iα)

where

α =

√
2

2
(1 + i)

4
√

2 =
( 4
√

2)3(1 + i)

2

Thus the splitting field of f over Q is Q(α, i). Q(α, i) is Galois over Q(α) because it is
degree 2, so there exists an automorphism τ of Q(α, i) over Q(α) mapping i to −i. Since
Q(α, i) is Galois over Q(i) (because it is the splitting field of f over Q(i)), there exists an
automorphism σ of Q(α, i) over Q(i) such that σ(α) = iα. Then σ, σ2, σ3, σ4 are all distinct,
and σ lives inside a group of order 4, so σ has order 4. Note that τ 6= σk for any k, so the
Galois group G of Q(α, i) over Q is generated by σ, τ . We have the relation τστ−1 = σ3 (see
1n for same reasoning), so G ∼= D8.

Over Q(i), the Galois group of Q(α, i) still is generated by σ, so the Galois group is cyclic
of order 4.

Lemma 0.17 (for Exericse 1jk). Let p1, . . . , pn be primes. For each i, let Ki = Q(
√
pi) be

the splitting field of x2 − pi over Q. Then

Kn ∩ (K1 . . . Kn−1) = Q

Proof. Suppose the intersection is not empty. Then
√
pn lies in K1 . . . Kn−1, so it can be

written as a multivariate polynomial in the
√
pj,

√
pn =

∑
i

(
ai
∏
j

√
pj

)

where ai ∈ Q. Taking the square of both sides, we see that pn can be written as

pn =

(∑
i

(
ai
∏
j

√
pj

))2
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Thus the RHS must be an integer. This implies that all of the
√
pj terms are zero, so

√
pn =

∑
i

ai

But now the RHS is rational, but this is a contradiction, since the square root of a prime is
never rational.

Proposition 0.18 (Exercise 1jk). Let p1, . . . pn be distinct primes in N. Then the Galois
group of

f(x) = (x2 − p1) . . . (x2 − pn)

over Q is
n∏
i=1

Z/2Z

(this is 1k). As a consequence, the Galois group of (x2 − 2)(x2 − 3)(x2 − 5)(x2 − 7) over Q
is
∏4

i=1 Z/2Z (this is 1j).

Proof. Let Ki be the splitting field of x2−pi. Then the splitting field of f is the compositum
K1 . . . Kn in Q. The Galois group of Ki/Q is Z/2Z since it is a quadratic. By the previous
lemma

Ki+1 ∩ (K1 . . . Ki) = Q

for each i = 1, . . . , n − 1. Then applying Corollary 1.1t (Lang pg 267), the Galois group of
the compositum K1 . . . Kn is the product of the Galois groups K1, . . . , Kn.

Gal(f) ∼=
n∏
i=1

Z/2Z

To get the Galois group of (x2 − 2)(x2 − 3)(x2 − 5)(x2 − 7), just take p1 = 2, p2 = 3, p3 =
5, p4 = 7.

Proposition 0.19 (Exercise 1`). The Galois group of f(x) = (x3 − 2)(x3 − 3)(x2 − 2) over
Q(
√
−3) is A3 × A3 × Z/2Z. (Another way to write this group is Z3 ⊕ Z3 ⊕ Z2.)

Proof. Note that each of x3 − 2, x3 − 3, and x2 − 2 are irreducible over Q(
√
−3), since they

have no roots. The Galois group of x2 − 2 is Z/2Z, as for all quadratics. The Galois group
of x3− 2 is A3 since the discriminant is −108 = (6

√
−3)2. The Galois group of x3− 3 is A3,

since the discriminant is −35 = (9
√
−3)2, which is a square in Q(

√
−3).

The Galois group of f embeds into the product of these groups, by Corollary 1.15. By
the same kind of logic as in Lemma 0.17, the intersection of the splitting fields of these
polynomials over Q(

√
−3) is just Q(

√
−3), so this embedding is an isomorphism.

Proposition 0.20 (Exercise 1m). Let t be transcendental over C and n ∈ N, and let f(x) =
xn − t. Then the Galois group of f over C(t) is Z/nZ.
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Proof. Let ω be a root of f in some splitting field, and let β be a primitive nth root of unity.
Then

{ω, βω, . . . , βn−1ω}

are all roots of f , since (βkω)n = βnkωn = ωn = t. Thus these are all the roots of f ,
since f can’t have more than n roots. Thus the splitting field of f is C(ω). Elements of
G = Gal(C(ω)/C(t)) permute the roots and fix C. In particular, they fix β, so an element
of G is determined by how it acts on ω, so

G = {σi : 0 ≤ i ≤ n− 1}

where σi(ω) = βiω. We can see that σ1 generates G, so G ∼= Z/nZ.

Proposition 0.21 (Exercise 1n). Let t be transcendental over C. Let f(x) = x4 − t. The
Galois group of f over R is D8.

Proof. Let ω be a root of f is some splitting field. Then we can factor f as

x4 − t = (x2 − ω2)(x2 + ω2) = (x− ω)(x+ ω)(x− iω)(x+ iω)

Thus R(ω, i) is the splitting field for f . Note that [R(i) : R] = 2 since deg Irr(i,R) = deg(x2+
1) = 2. Also note that R(ω, i) is the splitting field of f over R(i), and [R(ω, i) : R(i)] = 4
since deg(Irr(ω,R(i)) = deg f = 4, so R(ω, i)/R(i) is Galois. So we have the following
diagram of field extensions, with degrees.

R(ω, i)

R(ω) R(i)

R

2 4

4 2

Since R(ω, i)/R(ω) is degree 2, it is Galois, so there exists an automorphism τ over R(ω)
such that τ(i) = −i, and τ 2 = Id. Since R(ω, i)/R(i) is Galois, there exists an automorphism
σ of R(ω, i) over R(i) sending ω to iω. Then σ, σ2, σ3, σ4 are all distinct, so |σ| = 4. Let
G = Gal(R(ω, i)/R). Note that τ 6∈ 〈σ〉, and that |G| = 8. Thus we have τ, σ in G of order
2 and 4 generating disjoint subgroups, so G = 〈τ, σ〉. We can check that τστ−1 = σ3, so
G ∼= D8. We just have to check that they agree on ω and i.

τστ−1(i) = τσ(−i) = τ(−i) = i σ3(i) = i

τστ−1(ω) = τσ(ω) = τ(iω) = −iω σ3(ω) = i3ω = −iω

Proposition 0.22 (Exercise 2). For each of the following polynomials, we compute the
Galois group over Q.

a) x3 + x+ 1, G = S3
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b) x3 − x+ 1, G = S3

c) x3 + 2x+ 1, G = S3

d) x3 − 2x+ 1, G = Z/2Z

e) x3 − x− 1, G = S3

f) x3 − 12x+ 8, G = A3

g) x3 + x2 − 2x− 1, G = A3

Proof. (a) By the integral root test, the only possible rational roots are ±1, and we check
that these are not roots, so x3 + x+ 1 is irreducible. The discriminant is −31, which is not
a square, so the Galois group is S3.

(b) By the integral root test, the only possible rational roots are ±1, which we can check
are not roots, so x3 − x + 1 is irreducible. The discriminant is −23, which is not a square,
so the Galois group is S3.

(c) By the integral root test, the only possible rational roots are ±1, which are not roots,
so x3 + 2x+ 1 is irreducible over Q. The discriminant is −59, which is not a square, so the
Galois group is S3.

(d) We can factor x3 − 2x+ 1 as (x− 1)(x2 + x− 1), so the splitting field of x3 − 2x+ 1
over Q is the splitting field of x2 + x− 1. This is a quadratic extension, so the Galois group
is Z/2Z.

(e) By the integral root test, the only possible rational roots are ±1, which are not roots,
so x3 − x − 1 is irreducible. The discriminant is −23, which is not a square, so the Galois
group is S3.

(f) By the integral root test, the only possible rational roots are ±1,±2,±4,±8, which
we check tediously are not roots of x3−12x+8, so it is irreducible over Q. The discriminant
is 5184, which is a square (5184 = 722), so the Galois group is A3.

(g) By substituting x = y + 1
3
, we get

x3 + x2 − 2x− 1 = y3 − 7

3
y − 7

27

So the Galois group of the polynomial in x is the same as the Galois group of the polynomial
in y. By the integral root test, it is irreducible over Q. The discriminant is 49, which is a
square, so the Galois group is A3.

Proposition 0.23 (Exercise 5a). Let k be a field of characteristic 6= 2, 3. Let f ∈ k[x] be an
irreducible cubic with discriminant D ∈ k and let g = x2 − c ∈ k[x] be irreducible. Suppose
that

[k(
√
D) : k] = 2 k(

√
D) 6= k(

√
c)

Let L be the splitting field of fg. Then [L : k] = 12.

Proof. Let Kf be the splitting field of f and let Kg = k(
√
c) be the splitting field of g.

Then L = KgKf (in some algebraic closure), and we can draw the following diagram of field
extensions:
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KgKf = L

Kg = k(
√
c) Kf

k

Since char k 6= 2, 3, f and g can’t have repeated roots, so all the above extensions are
separable. The extensions Kg/k,Kf/k, and KgKf/k are all normal, as they are splitting
fields. Then by Theorem 3.4 (Lang pg 238), KgKf/Kg and KgKf/Kf are normal. Thus all
the extensions in the diagram are Galois.

Because g is irreducible,
√
c 6∈ k, so [k(

√
c) : k] = 2. Note that k(

√
D) is the splitting

field of x2 −D ∈ k[x], since [k(
√
D) : k] = 2, this implies that D is not a square in k. Thus

by the theorem on page 270 of Lang, the Galois group of Kf/k is S3. Since Kf is a splitting
field of a cubic, by Exercise 8 (last homework), [Kf : k] divides 6. But the size of the Galois
group cannot exceed the degree of the extension, so [Kf : k] = 6.

We claim that Kg ∩ Kf = k. Since k(
√
c) 6= k(

√
D),
√
c cannot be a root of f , so√

c 6∈ Kf . Thus Kf ∩ Kg = k. Then applying Theorem 1.12 (Lang pg 266), we get that
[KgKf : Kf ] = 2 and [KgKf : Kg] = 6.

KgKf

Kg Kf

k

6 2

2 6

Then by the multiplicative tower law, [KgKf : k] = 12.

Proposition 0.24 (Exercise 5b). Let k be a field of characteristic 6= 2, 3. Let f ∈ k[x]
be an irreducible cubic with discriminant D and a root α (in an algebraic closure). Let
g = x2 − c ∈ k[x] be irreducible with a root β. Suppose that

[k(
√
D) : k] = 2 k(

√
D) 6= k(

√
c)

Let γ = α + β. Then
[k(γ) : k] = 6

Proof. We have k(γ) ⊂ k(α, β), and [k(α) : k] = deg f = 3 and [k(β) : k] = deg g = 2.
Then using Corollary 1.13 and the tower law and the fact that 2 and 3 are coprime, we can
conclude that [k(α, β) : k(α)] = 2 and [k(α, β) : k(β)] = 3, so [k(α, β) : k] = 3.
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k(α, β)

k(α) k(γ) = k(α + β) k(β)

k

2 3

3 2

Thus [k(γ) : k] ≤ 6. Since k(α, β)/k is a separable extension with degree 6, there are 6
distinct embeddings of k(α, β) over k into k (algebraic closure of k). Let α1, α2, α3 ∈ k be
the roots of f . Then the 6 embeddings of k(α, β) over k into k are determined by sending α
to some αi and sending β to ±β. So we have σ±

i where σ±
i (α) = αi and σ±

i (β) = ±β.

σ+
1 (α) = α1 σ+

1 (β) = β

σ+
2 (α) = α2 σ+

2 (β) = β

σ+
3 (α) = α3 σ+

3 (β) = β

σ−
1 (α) = α1 σ−

1 (β) = −β
σ−
2 (α) = α2 σ−

2 (β) = −β
σ−
3 (α) = α3 σ−

3 (β) = −β

Then we restrict each σ±
i to an embedding of k(γ) over k into k. Restricted to k(γ), they

are determined by σ±
i (γ) = σ±

i (α) + σ±
i (β) = αi ± β.

We claim that the six elements αi ± β for i = 1, 2, 3 are all distinct. Since each αi is
distinct, α1 +β, α2 +β, α3 +β are distinct, and likewise for αi−β. Suppose αi +β = αj −β
for some i 6= j. This implies αj − αi = 2β, which would imply that the splitting field of f
contains k(β). But by hypothesis, D is not a square in k so the Galois group of f over k
is S3, which has a unique index two subgroup. Using the Galois correspondence, there is a
unique degree 2 subextension between f and its splitting field, which is k(

√
D), which is not

k(β) by hypothesis. Thus the splitting field of f cannot contain k(β), so we can conclude
that all the αi ± β are distinct.

Thus there are six distinct embeddings of k(γ) over k into k, so [k(γ) : k] ≥ [k(γ) : k]s = 6.
Combining this with the opposite inequality, we get [k(γ) : k] = 6.

Proposition 0.25 (Exercise 7a). Let K = Q(
√
a) where a ∈ Z, a < 0. Then K cannot be

embedded in a cyclic extension whose degree over Q is divisible by 4.

Proof. Suppose that there exists a field L such that Q ⊂ K ⊂ L such that L/Q is cyclic of
degree divisible by 4. We may assume all these fields lie in an algebraic closure of Q which
is contained in C. Let G = Gal(L/Q), so G is cyclic of order 4n. Let σ be a generator.

Since L/Q is Galois, it is separable, so L/K is separable. Then by the Primitive Element
Theorem there exists α ∈ L such that L = K(α) = Q(

√
a, α).

Note that K = Q(
√
a) is the splitting field of x2−a over Q, which is irreducible as it has

no roots in Q, so [K : Q] = 2. Then by the Galois correspondence, Gal(L/K) is an index-2
subgroup of Gal(L/Q) = 〈σ〉. The only index-2 subgroup is 〈σ2〉, so Gal(L/K) = 〈σ2〉. (A
finite cyclic group of order m has a unique subgroup of order d for each divisor d of m.)
Hence σ2, σ4, . . . , σ4n are all automorphisms of L over K. In particular, σ2n fixes K.
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L = K(α)

Q(α) K

Q(α) ∩K

Q

2n

2

By the tower law,
[K : Q(α) ∩K][Q(α) ∩K : Q] = 2

so one of them must be 1 and the other must be 2. We consider these in two separate cases.
We reach a contradiction in both cases.

Case 1: First suppose [Q(α) ∩ K : Q] = 2. Then Q(α) ∩ K = K, which implies
K ⊂ Q(α), which implies L = Q(α).

L = Q(α)

K = Q(
√
a)

Q

2n

2

Let τ : C → C be complex conjugation (x + iy 7→ x − iy). It restricts to an automorphism
of L over Q, so τ ∈ G = Gal(L/Q). Since a < 0, we can think of

√
a as i

√
−a, and then

τ(
√
a) = τ(i

√
−a) = −i

√
−a = −

√
a

Thus τ does not fix K, so τ is not the identity. Since τ 2 = Id, it has order 2. But there
is a unique element of order 2 in G = 〈σ〉, namely σ2n. As previously shown, σ2n is an
automorphism over K, so we reach a contradiction. This rules out Case 1 as a possibility.

Case 2: Now suppose [Q(α) ∩K : Q] = 1, which immediately implies Q(α) ∩K = Q.
Applying Theorem 1.12 (Lang pg 266), we can fill in the degrees on the following diagram.

L = K(α)

Q(α) K

Q

2 2n

2n 2

Then by the Galois correspondence, Gal(L(Q(α)) is a subgroup of G = Gal(L/Q) of index
2, so it must be 〈σ2〉. In particular, σ2n ∈ Gal(L/Q(α)), so σ2n fixes Q(α). Since σ2n also
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fixes K, this implies that σ2n fixes all of L. Thus σ2n = IdL, but this is a contradiction since
σ has order 4n.

We reached a contradiction in both Case 1 and Case 2, so we conclude that no such field
extension L exists.

Lemma 0.26 (for Exercise 7c). Let k be a field of characteristic 6= 2, and let f(x) =
x4 + ax2 + b ∈ k[x] be irreducible with roots ±α,±β in an algebraic closure. Let G be the
Galois group of f . Then

1. If b is a square in k, then G ∼= Z/2Z× Z/2Z.

2. If b is not a square in k and b(a2 − 4b) is a square in k, then G ∼= Z/4Z.

Proof. We know that G is a transitive subgroup on the symmetric group on the set {±α,±β}.
Any σ ∈ G must also satisfy σ(−α) = −σ(α) and σ(−β) = −σ(β) since it must fix k. The
subgroup of S4 on these letters that satisfies these two relations is (using cycle notation)

H = {id,(α − α), (β − β), (α β)(−α − β), (α − β)(−α β),

(α β − α − β), (α − β − α β), (α − α)(β − β)}

This H has three transitive subgroups: all of H, and

H1 = {id(α − α)(β − β), (α β)(−α − β), (α − β)(−α β)} ∼= Z/2Z× Z/2Z
H2 = {id, (α − α)(β − β), (α β − α − β), (α − β − α β)} ∼= Z/4Z

Note that f factors as

f(x) = x4 + ax2 + b = (x2 − α2)(x2 − β2) =⇒ b = (αβ)2 and a = −α2 − β2

Now we can prove (1). If b is a square in k, since b = (αβ)2, we get αβ ∈ k. Then applying
τ1 = (α − β − α β) ∈ H2 to αβ,

τ1(αβ) = τ1(α)τ1(β) = −βα

thus τ1 does not fix αβ, which is an element of k, so τ1 6∈ G. Thus in this case, G = H1
∼=

Z/2Z ∼= Z/2Z.
Now we prove (2). Suppose b(a2 − 4b) is a square in k. We can rewrite it as

b(a2 − 4b) = α2β2((−α2 − β)2 − 4α2β2) = α2β2(α4 + 2α2β2 + β4 − 4α2β2)

= α2β2(α4 − 2α2β2 + β4) = α2β2(α2 − β2)2 =
(
αβ(α2 − β2)

)2
so if b(a2−4b) is a square in k, then αβ(α2−β2) ∈ k. Then applying τ2 = (α β)(−α−β) ∈ H1

to αβ(α2 − β2), we get

τ2

(
αβ(α2 − β2)

)
= τ2(α)τ2(β)

(
τ2(α)2 − τ2(β)2

)
= βα

(
β2 − α2

)
= −αβ(α2 − β2)

Thus τ2 does not fix αβ(α2−β2), which lies in k, so τ2 6∈ G. Since τ2 ∈ H1, this implies that
G = H2

∼= Z/4Z.
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Proposition 0.27 (Exercise 7b). Let f(x) = x4 + 30x2 + 45. Let α be a root of f in an
algebraic closure of Q. Then Q(α) is cyclic of degree 4 over Q.

Proof. Note that f is irreducible by Eisenstien’s Criterion with p = 5. Let Kf be the splitting
field of f in an algebraic closure of Q. The roots of f are ±η,±β ∈ Kf where

η = i

√
15 + 6

√
5 β = i

√
15− 6

√
5

We notice that η2 = −15− 6
√

5 and β2 = −15 + 6
√

5, so Q(
√

5) ⊂ Q(η),Q(β). So we have
the following diagram,

Kf

Q(η) Q(β)

Q(
√

5)

Q

2 2

2

We know that [Q(
√

5) : Q] = 2 since it is the splitting field of x2 − 5. We also know
[Q(η) : Q(

√
5)] = [Q(β) : Q(

√
5)] = 2 since they are the respective splitting fields of

x2 − (−15− 6
√

5) x2 − (−15 + 5
√

5)

over Q(
√

5). Using the previous lemma, we check that

b(a2 − 4b) = 45(302 − 4(45)) = 32400 = 1802

Since this is a square, the Galois group of Kf/Q is Z/4Z, so [Kf : Q] = 4. But by the tower
law,

[Kf : Q] = [Kf : Q(η)][Q(η) : Q(
√

5)][Q(
√

5) : Q] = 4[Kf : Q(η)] ≤ 4

[Kf : Q] = [Kf : Q(β)][Q(β) : Q(
√

5)][Q(
√

5) : Q] = 4[Kf : Q(β)] ≤ 4

which implies [Kf : Q(β)] = [Kf : Q(η)] = 1 which implies Q(η) = Q(β) = Q(−η) =
Q(−β) = Kf . Since the Galois group of Kf/Q is Z/4Z, this says that Q(α)/Q is cyclic of
degree 4 for any root (±η,±β) of f .

Proposition 0.28 (Exercise 7c). Let f(x) = x4 + 4x2 + 2. Then f is irreducible over Q and
the Galois group of f is cyclic.

Proof. By Eisenstein’s Criterion at the prime 2, f is irreducible. The constant coefficient is
not one, and

b(a2 − 4b) = 2(42 − 4(2)) = 2(16− 8) = 16 = 42

so by the previous lemma, the Galois group is Z/4Z.
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For convenience, for Exercise 13, we list some low degree monic irreducible polynomials mod
2 and 3.

F2[x]
Degree Irreducibles Reducibles
0 1 none
1 x, x+ 1 none
2 x2 + x+ 1 x2 + 1
3 x3 + x+ 1, x3 + x2 + 1 x3 + 1, x3 + x2 + x+ 1
4 x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1 (everything else of degree 4)

F3[x]
Degree Irreducibles Reducibles
0 1, 2 none
1 x, x+ 1, x+ 2 none
2 x2 + 1, . . . x2 + 2, . . .
3 x3 + 2x+ 1, . . . . . .

I give a statement of the following theorem because Lang doesn’t label it and doesn’t state
it in the way I want to frequently apply it, so that I can easily refer to it.

Theorem 0.29 (Dedekind). Let f ∈ Z[x] be monic, irreducible, and separable. Let p ∈ Z
be prime and let fp ∈ Fp[x] be the reduction of the coefficients of f mod p. Let K be the
splitting field of f . If fp factors as a product

fp(x) =
r∏
i=1

qi(x)

where each qi is irredubile (in Fp[x]) with di = deg qi, then Gal(K/Q) contains an element
of cycle type (d1, . . . , dr).

In particular, if fp(x) is irreducible in Fp[x], then the Galois group of f contains a cycle of
length deg fp = deg f .

Lemma 0.30 (for Exercise 13). A subgroup of S4 containing a 4-cycle and a 3-cycle is S4.

Proof. The 3-cycle and 4-cycle together generate a subgroup of size at least 12, so the
subgroup must be either S4 or A4. But A4 has no elements of order 4, so it must be S4.

Proposition 0.31 (Exercise 13a). Let f(x) = x4 + 2x2 + x+ 3. The Galois group of f over
Q is S4.

Proof. First note that f is separable (using a computer to check that it has 4 distinct roots
in C). Let G be the Galois group of f . Reducing f mod 2 we get x4 + x + 1, which is
irreducible (see table). Then by Theorem 0.29 above, G contains a 4-cycle. Reducing f mod
3, we get

x4 + 2x2 + x = x(x3 + 2x+ 1)

This cubic is irreducible over F3 because it has no roots (just check 0, 1, 2). Then by Theorem
0.29, G contains a 3-cycle. We know that G is (isomorphic to) a subgroup of S4, so by Lemma
0.30, G ∼= S4.
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Proposition 0.32 (Exercise 13b). The Galois group of f(x) = x4 + 3x3 − 3x− 2 over Q is
S4.

Proof. First note that f is separable (use a computer to check that f has 4 distinct roots
in C). Let G be the Galois group of f . We know that G embeds in S4, since f has degree
4. Reducing f mod 2 we get x4 + x3 + x = x(x3 + x2 + 1), which has an irreducible cubic
(see table). Thus G contains a 3-cycle. Reducing f mod 5 we get x4 + 3x3 + 2x + 3, which
is irreducible (checked via computer). Thus G contains a 4-cycle. Since G has a 4-cycle and
a 3-cycle, it is S4.
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